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The theory of small perturbations is used extensively in studying flow past bodies at 
small angles of attack u . The solution in this case is a sum of two terms, one of which 

represents the solution for cz = 0, while the other is proportional to a. If linearisation 

is effected near the unperturbed flow, the second terms take the form of linear equations 

with constant coefficients. This theory is valid for slender bodies and wings. In the case 
of thick-section bodies or surfaces, linearization can be carried out near the known per- 

turbed flow only, e. g. near the axisymmetric flow /J- 31. In this case the coefficients 
of the linear equations for the second terms depend on the first terms of the series expan- 

sion in a. 
If the body is nonaxisymmetric, the second terms depend on the orientation of the body 

relative to the free-flow velocity vector. We show that the solution can be found for any 

position of the body in this case, provided one knows the solution for just two positions 
of the body relative to the free flow. A similar result for specific slender bodies was 

arrived at in [4, 51. 

1. Let us consider the flow past some finite body of a stream of ideal gas with the con- 
stant velocity V,, pressure pm and density poo. We shall use the rectangular coordinate 
system r, y, z rigidly attached to the body and the system X, y’, 2’ such that the free- 

flow velocity vector lies in the plane of the 

ti 

Y 0 Y' axes 5, !/’ (see Fig. 1). These two systems 
are related by the equations 

.__.(_~$_ 

y’ = y cost3 + z sin O 

z’ = - y sin 8 + z cos 9 (1.1) 
a 

VC&7 / /“ Here 9 is the angle between the axes y 

Z’ 
and y’ (the roll angle). 

Fig. 1 The angle between the free-flow velocity 
2 

vector and the z-axis is u (the angle of 

attack). 
The projections U, v, w of the velocity vector on the z -, Y- altd z-axes, respectively, 

the pressure p , and the density p must satisfy the equations 

i/Z grad (Vz) - V x rot V = - p-'grad P 

div (pV) = 0, V grad (p / p”) = 0 (1.2) 
At infinity we have 

u = V, 00s a, V = V, sin a c0.s 8, 1u = V, sin a sin 8, p = pa, p = P, (1.3) 

The normal component of the velocity is equal to zero at the body. If J’ (5, Y, 2) = u 

is the equation of the body surface, this condition can be written as 

V-grad F = 0 (1.4) 

2. We shall attempt to find the solution of Eqs. (1.2) for small angles a in the form 
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u = u. + cd, v = u, + au', w = w. + aw” 

P = PO -I- w’, p = PO -I- ap’ 

f2.f) 

Here the functions uo, r+,, r&,, pa, PO are the solution of the problem for a = 0. They 
satisfy Eqs. (1.2) and boundary conditions (1.3) and (1.4) in which we have set a = 0. 

Substituting relation (2.1) into Eqs. (1.23, we obtain the following equations for the 
quantities u’, V’,w’, p’, P’: 

grad (VQV’) - VoXrot V’ - V’Xrot VO= 5 grad p0 - $ grad p’ 

div (poV’ + p’V0) = 0, V’*grad $ + Va.grad G 
I ( PO 

-$-x$- 
)I 

(2.2) 
=O 

Linearization of boundary conditions (1.3) and (I, 4) yields the following conditions 
for the primed parameters: 

(2.4) 

We note that in the coordinate system x, y, z the null terms in expressions (2.1) are 
the same for differing 8, since boundary conditions (I. 3) do not depend on 8 for a = 0 
The equation of the body surface is also independent of 0 in these coordinates. 

Let us denote the sofutions of Eqs. (‘2.2) for 8 = 0 by the subscript 1 and for 8 =r,$ x 
by the subscript 2 l These solutions satisfy the conditions 

?Jr’ = 0, uy’ = Y,, w,’ = 0, &’ = 0, PI’ = 0 (3.5) 

% * = 0, v,’ = 0, w,’ = v,, pzt = 0, pz’ z 0 

at infinity and condition (2.4) at the body, 
Equations (2.2) are linear in the parameters u’, Y’, w’, P’, P’, so that the functions 

u’ = ur’ cos 0 + nzt sin 0, v’ =r vl’ cos 0 + 9’ sin e, w’ = wl’ cw 0 + ~7%’ sin fj 

p’ = pl’ dos 8 4 pe‘ sin e, p’ = pI’ cos 0 + pal sin 0 (2.6) 
are the solutions of these equations. They also satisfy condition (2.4) at the body and 

boundary conditions (l-3) at infinity by virtue of Eqs, (2.5). We have therefore proved 
the following theorem: if the problem has a solution for 3 = 0 and 0 = 1/z x, then 
there also exists a solution for any angle 8, and this solution can be expressed in terms 

of the two aforementioned solutions by way of formulas (2-6). 

3. Conditions at the resulting shock waves must be fulfilled in supersonic flow past a 
body, We can show that the solution can be expressed in the form (2.6) in this case as 

well, 
The conditions at the shock wave in three-dimensional flow are 

-rpv, VI = [PI n, IP’v,l = 0 (3.1) 

The square brackets indicate that the quantities inside them experience jumps in pass- 
ing through the shock wave ; V, is the velocity component along the normal to the shock 
wave surface, 

Let G (x, y, Z) = 0 be the equation of the shock wave surface ; the unit vector of the 
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normal n to this surface can then be written as 

n=$fg 

so that V, = Van. Th.is enables us to rewrite expressions (3.1) as 

[pV] grad G = 0, - [p (V-grad G) V] = Ipl grad G (3.2) 

-[[pV]gradC 

The equation of the shock wave surface for small a can be written as 

G (x. 9, z) = GB (it Y? a) + o” G’ is, 5% z) (33.3) 

I’fere Gs (3, gI Z) = 0 is the equation for the shock wave surface for GC = 0, which is 

independent ot the angle tf in the coordinate system 5, y, z . 

Substituting relations (3.3f and (2.1) into expressions (3.2). we obtain the following 

equations for the linear terms: 

IpaV, grad G’ + (pOV’ - p’V,) grad G,] = 0 

[- (p’Y, grad G, + pOV’ grad G, + poV, grad G’) V,] - 

--]~a IV, grad G,) V’l = WI grad G0 + ]pOl grad G’ 

@TO - p0V3 grad 

( 

(3.4) 

= IPOVOI grad G’ -+ Ipovp + pvo] grad G* 

Let us substiWe solution (2.6) into the first equation of system (3,4), 

]P,V, grad G’ + (pOVI’ - p’V,) grad G, cas 6 -/- sin 6 (pOV,’ - pa’Vo)X 

Xgrad G,] = 0 13.5) 

Taking the function G’ in the form 

G’ = G,’ cos 0 + G,’ sin 6 (W) 

where GIf and G,* are functions which yield the solutions for 6 = 0 and 6 = l/t n, we 

ensure identical fnlfi~lment of Eq, (3.51, since the quantities with the subscripts 1 and 

‘2 satisfy relations (3.4). In exactly the same way we can show that the remaining equa- 

tions of (3.4) are satisfied, provided the solution for any angle 6 is taken in she form 
(2.6) and the shock wave surface is given by (3,3),(3,6). 

4, Let us denote the forces acting along the Y - and z-axes by Y and Z ,respectively, 

By virtue of (0.6) these forces are given by 

Y = Y, -j- a (Y,” cos 0 + Y2’ sin O), 22 = Z, + a (Z,’ co& + 25,’ sin 0) (4.1) 

The subscripts in these expressions have the same significance as above. 
The aerodynamic force components N and R acting along the .r~‘- and z’-axes can be 

expressed in terms of Y and z , 

N = Y cos 0 -j- 2 sin 0, fi = Z COP 0 - Y sin 6 (4.31 

Substituting (4.1) into (4, ‘L), we obtain 
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(4.3) 
N = Y, cos 0 + 2, sin 0 + a IN,' GOSS 8 + N,' sins 8 -j- (R,’ - R,‘) sin 0 cos 61 

R = Z. cos0 - Y, sin 0 + a [R,' cos20 + Rz' sin8 0 + (Nra - N,‘) sin 6 cos 61 

Here 
Nl’ = Yi, N,’ = Zz’, HI’ = Z,', R,' = - Ys' 

Formulas (4.3) expre’ss the normal and lateral forces for any roll angle in terms of 
their values for 0 = 0 and 6 = ‘1% n. 

Let us consider bodies symmetric upon rotation by the angle A6 = 2nfn (n is an inte- 

ger). Rotation of the body of the angle ei = iZ&n then ensures ~lfillment of the equa- 
tions N (6,) = N (0), Iz (Q = fz (0). Hence, relations (4.3) yield the equations 

(N, - N,‘) sin2Q + (fi,’ - R,‘) sin Oi Co& i = 0 

(N,' - N,') cos Bi sin Bi + (R,' *- RI') sina 8i = 0 

For n > 2 these equations have a zero solution only and formulas (4.3) become 

N = aNI’, R=ctR, (4.4) 

Hence, the normal and lateral.forces do not depend on the roll angle in this case. 
If the body is also specularly symmetric, e.g.for 0 = 0, then Ell’ = 0 and we infer 

from (4.4) that R = 0 for any roll angle. 

The above results can be extended to the case of harmonic vibrations of bodies. 
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